
PMM U.S.S.R.,Vol.5O,No.Z,pp.240-245,1986 

Printed in Great Britain 
OOZl-8928/86 $10.00+0.00 

01987 Pergamon Journals Ltd. 

STRESS DISTRIBUTION NEAR THE EDGE OF A CRACK IN A PRESTRESSED ELASTIC BODY* 

L.M. FILIPPOVA 

The effect of preliminary loading in the plane of a crack on the 

stress distribution around the crack edge is investigated for normal 

fracture, as well as transverse and longitudinal shear. Unlike /l/ where 
complex potentials of the linearized theory of elasticity were used, a 

different method is employed to solve the problem and the following 

questions are discussed: the effect of initial deformation on the stress 

intensity coefficients and the connection between the conditions of 
solvability of the problem of a crack and the Hadamard inequality. In 

the case of an isotropic incompressible material of general type it is 

shown that the initial deformation does not affect the order of the 

stress singularity at the crack edge. Asymptotic representations of the 

displacements and stresses near the crack edge are obtained in more 

explicit form than those in /l/. It is established that the initial 

deformation does not influence the stress intensity coefficients of the 

normal fracture and longitudinal shear, but increases the stress intensity 

coefficient in the case of transverse shear. 

We consider an unbounded elastic space weakened by a plane, infinitely thin crack (slit) 

bounded by a small closed contour. We assume that the elastic medium undergoes a homogeneous 

finite deformation such that the planes parallel to the plane of the crack are stress-free. 

We shall consider the problem of superimposing, on the finite homogeneous deformation 

described above, a small deformation caused by a uniform loading applied to the crack surface. 

Since the additional deformation is assumed small, we shall consider the latter problem in 

the linearized formulation. 
We note that superposition of the solutions of the problem formulated and of the problem 

of small homogeneous deformation in a prestressed space without cracks, appearing as a result 

of a uniform applied load, yields a solution of the problem of the deformation of a body 

with a load-free crack by forces applied at infinity. 

In order to study the asymptotic distribution of the displacements, deformation and 

stresses near the crack contour, it is sufficient, according to the microscope principle /2/, 

a study three two-dimensional problems for a rectilinear crack, namely the problem of normal 

fracture, of transverse shear and of longitudinal shear /2, 3/: 
Without the mass forces the linearized equations of equilibrium have the form /4/ 

where z, (s = 1, 2, 3) are the Cartesian coordinates in the predeformed state, u, are the 

components of additional displacement, tmk are the initial stresses and c,* are the additional 

true stresses, i.e. those caused by the additional displacements in the increments of the 

Cauchy stress tensor components. In the case of an isotropic incompressible body, when the 

coordinate axes coincide with the principle axes of the initial homogeneous deformation, the 
quantities oak are given by /5, 6/: 

Here &(i = 1,2,3) are the initial extensions in the initial deformed state, n = n (h,, 

&,h,) is the specific potential energy of the material, p is the additional pressure, and the 
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symbol (123) denotes thattheunwritten relations are obtained by cyclic permutation of the 

indices. 

We shall consider the problem of a rectilinear crack with the edge parallel to the 

principal axis of the initial deformation. In this case the problem of normal fracture, 

transverse shear and longitudinal shear can be considered independently and the first two 
problems are the problems of plane deformation, while in the third problem we have antiplane 

deformation. 

Let the trace of the plane crack with edges parallel to the z1 axis in the x1r2 plane 

coincide with the segment of the abscissa Izl 1 <a. For the plane additional deformation we 

write the system of linearized equations of equilibrium and conditions'of incompressibility 

in the form 

(3) 

The problem of normal fracture crack whose edges are under a uniform pressure p,,, is 

equivalent to the problem for a half-plane y> 0 with the following boundary conditions at 

the boundary y = 0: 

( 

au 
%i=v ay + $)= 0, l~l<~ (4) 

4=--Po,IrI<a;v=O, Ixl>a (5) 

Applying the integral Fourier transform to (3)-_(S), we arrive at a paired integral 
equation whose solution is known /7/. The displacements and additional non-symmetric stresses 

in the half-plane y > 0 are given by the formulas 

u = --pOQ' Im {(or - oa)-' IOjl (1 + oa") (1/a* - 21' + iz,) - 

. . . 1) 
v = --p@ Re {(ol - oJ1 [(I + 02*) (1/a' - zr' i- iz,) - 

. . . 11 
0 = [(i + 611y (1 + 0,2) v + (WIQ~ - 1) pi-l 

(6) 

q = - Y&J Re { (ti - 02)~~ [w~(I + 0)2*)(v - p + ~11) (I + F$L2) - . . .]) 

811=-_~o~((1+01')(1+~?)vRe (o~-c,I~)-I~ 
I 

L c al I+ &j -...j) 

012 = p0(D Im 
i 
(oh - oh)-1 (X + VOQ) (1 + 022) L ( 1 f 

*) --]J 
%l=Po@(l + W*)(l -I- &)V Im 

I 
(Oi-(J?$'i 

[ 
V* - -... 

3) 

Here 

z1 = 5 + aliy, z* = x + O*Q/ (7) 

where wr, oz are roots of the equation 

VU4 - ((.& - 2v)wZ + x = 0 (8) 

with positive real part. Repeated dots denote the expression obtained from the first term 
within the square brackets by interchanging the indices 1 and 2. 

We can show, as in /8/, that when the stricter Hadamard inequality is satisfied, Eq.(8) 
is guaranteed to have two roots with positive real parts, and two roots with negative real 
parts. This in turn ensures the existence of solutions of the problem (3)-(51, decaying as 
y+oO. 

On the extension of the crack line, the displacements and normal stress have, at y=O, 
the form 



242 

Note that (9) can be used when (8) has multiple roots. 

In order to study the form of the solution (6) near the slit end x = a, we introduce 
polar coordinates with origin at the point x = a, y = 0: 

2, = x + iy = a (1 + p&),x = a (1 f p cos cp), y =p sin 'p 

We shall assume that -n-s cp <<n. Let us denote by tk and Xirthe real and imaginary parts 

of the roots Olk, i.e. 

ofi = Tk + i Xk (k = 1, 2) (IO) 

(if the roots are complex, then rl =$,x1 = - x2). 

Let us write 

Zk = a (1 + pre'"") (k = 1, 2) 

pr > 0, --n < (Pk < n 

(11) 

From (7), (11) we obtain, for k = 1, 2 

pk = p lcos2 'p - Xk sin 2q + (tk" + xa2) sin' C&J]"' 

pk sin plr = pzk sin q (12) 

ph. cos qk = p (cos p - Xk sin 'p) 

Substituting expressions (11) into (6) and taking into account formulas (12), we obtain 

expressions for the displacements and stresses as functions of the polar coordinates p,'p. 

Retaining in these expressions terms of the lowest order in p, only, we obtain the asymptotic 

representations for the displacement and stress fields near the crack edge. The representations 

become very bulky in the general case, and will not therefore be given. The form of the 

solution near the crack tip has been studied in detail for Mooney material in /9/. 

From (6), (ll), (12) and (9) it follows naturally that for any material belonging to the 

class of isotropic incompressible bodies in question, satisfying the stronger Hadamard 

inequality, the displacements near the crack edge are of the order of ~"2, and the stresses 

are of the order of ~~"2. Thus the initial stresses acting in the plane of the crack do not 

affect the order of the stress singularities near the crack edge. 
In the problem of transverse shear the crack edges are loaded by a uniform tangential 

load of strength %0, whose direction is perpendicular to the crack front. The problem of the 

plane deformation of a prestressed plane with a slit is equivalent to the problem of integrating 

system (3) in the half-plane y > 0, with the following mixed boundary conditions at the 

boundary y = 0 of the half-plane: 

Q=o,Ixl<m (13) 

e,,=v(~+$-)=711=COrlSt, 15j<a (14) 

u=O,lxI>a 

Using the method of paired integral equations we obtain the solution of problem (3), (131, 

(14), in the following form: 

u = --t,~-~C‘o,o, Re {(ol - c+)-~ [(v - p i- 

VCIQ) (V'a"_ iz,) - . . .I} 
u = T,Y-~CD Im {(ol - tiJ1 (m2 (V - p f Y%') (Vu' - 21' f 

iz,) - . . .I} 

821=-~ocD Re (01 - OZ)-~ 
C 
%(Y- p+YwzZ)(l + 

w I + I/m 
i 

-I-) -...I) 

CI~~=T~V-~CPRR~ (or- w&l OZ(Y - p + yea) X (x + VW') 1 + 
I [ C 

811=~0cDo10pIm (01 -OZ)-~ 
( 

(v -_cI +~W.*)(1 + 01') 
( 
1 + *) -. . .]I 



(the quantities zl,ze are given by Eqs.(7)). On the extension of 
according to (15), 
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the crack line we have, 

(16) 

We note that the horizontal displacements of different slit edges have different signs, 
while the vertical displacements are the same at both edges. 

Formulas (15) show that in the problem of transverse shear the stress singularities at 
the crack tip are of the same order as in the analogous problem without the initial stresses 
/3/. 

A detailed pattern of displacement and stress distribution near the singularity x=a 
can be obtained by substituting relations (ll), (12) into (15). 

Let us consider in detail the case of Mooney material under an initial plane deformation, 
for which we have 

x = GAS, *v = GA*, p = G (P + 3h”d) 

a, = 1, AI = h = h-1, co1 = 1, 0, = iis 

t 11 = G (h - h-a), t,, = t,, = 0, G = 2 (C, + C,) 
?.a 

@ = GK(h) ' 
- K(a)=a~+a4+3aa-1 

Here C,, C, are the elastic constants of the Mooney material. 
Eqs.(l6) for the Mooney material will be 

(17) 

nl!J-ta= 
VP(1 +a*) 

(=(A) 
,/a2 

7 lzl<a (18) 

v Iy=o = To ha (1 - Aa) 
GK (a) ( 

5, Izl<a 
(5-~1/22-u*), z>a 

As h-1, relations (18) become the well-known expressions for the displacements of 
the crack edges in the analogous problem without initial stresses /3/ 

-- 
Uly=+O=+l/u+r*, Vly=o=o, Izl<<a 

Thus, taking the initial stresses into account leads to the appearance of vertical 
displacements of the crack edges under a tangential shearing load. The displacements do not 
lead to an opening of the crack, since they are the same for both edges. 

The equation K(h) = 0 has a unique real root h* = 0.545. Itien h-h', the displacements 
increase without limit at the crack surface. This means that when h< h*, the homogeneous 
stress-strain state of a compressed plane with a crack is unstable. 

Using (15) we derive the following asymptotic representations of the solution near the 
singularity L = a: 

JJ = 
mnh' 

GK(1) (1 - .I.') 
[2a-2 1/qT;sin + - (a2 + a-y 1/q2 sin+] + O(p) 

u= &,&y;""v, [2 1/gYcos+ - (a2 + a-2) l/gcos+ + (a- a-y] + o(p) 

021 = K(k); - ha) C 
~eos~-L#LOS~]+O(i) JT~ L 

&=ozz=h 
( 
--&sin+- V& -sin%) +O(r/p) 

&=alz=2A &.cos$--&cos~)+o(1) 
( 

all=2h 
( 
-&sin-$---&sin% +0(l) 

> 
* = c@(i + w 

K(b) (1 -A*) ' p3 = PA, A = (co9 ‘p + a4 sin2 cpp 

09) 
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It can be shown that when the initial stresses are removed, i.e. as h-+l, formulas (19) 
become the well-known /3/ asymptotic expressions for the displacements and stresses near the 
crack tip in the corresponding problem without initial stresses. 

In the problem of the longitudinal shear of a crack we consider an unbounded, elastic 
predeformed space containing a plane slit whose edges coincide with the straight lines y = 0, 
x=a and y = O,z= --a. The slit surfaces are uniformly loaded in the direction along the 
crack edges, and the directionsof the loads acting on opposite sides of the cut (slit) have 
opposite signs. 

If the principal axes of the initial deformation coincide with the coordinate axes and 
the body is isotropic, then using Eqs.(l), (2) we can conclude that the additional deformation 
appearing when the crack is undes such a load will be antiplane. This means that 

The equations of 
stressed body, to the 

The problem of a crack formulated above can be replaced by the equivalent problem for 

u = u = 0, U8 = w (x, y) 
equilibrium reduce, in the problem of antiplane deformation of a pre- 
single equation 

a half-plane y> 0 with the following boundary conditions on the straight line y = 0: 

ezs = 4, = const, 12 I < a; w = 0, I z I > a (21) 

Applying the integral Fourier transform we arrive at a paired integral equation whose 
solution yields an expression for a displacement in the upper half-plane 

zu=-&Re()/~-_iz~), zs=z+ias& _d=vYe (22) 

For the displacement at the slit edge we have 

where the upper sign refers to the upper edge, and the lower sign to the lower edge. 
The tangential stress on the line continuing the crack is given by 

0,=-t, 1-z 
( && ’ > Ixl>a (24) 

It can be shown that in the present problem the additional true stresses are given by 

a,, = %I,, %hs = 48. %$ = us9 = 0 (a, p = 1, 2) 

The asymptotic expression for the displacement and stress field diestribution about the 
crack edge is given, in the problem of longitudinal shear, by the formulas 

w=*~~sin~+O(p) (25) 

(r,=-~v';;r(26)-'/'sin~+O(l/i;) 

us+== to(2&-'~*cos~ + O(1) 

The quantities 'p, and p8 are given by relations (12) in which we must put k = 3. 
From the solution obtained above it follows that in case of a longitudinal shear of a 

prestressed body with a crack, the order of the stress singularity at the crack edge is the 
same as inthecase without the initial stresses. The initial stresses affect the form of the 
stress distribution around the singularity. 

We will now consider the question of what effect the prior loading has on the stress 
intensity coefficients, which play an important part in determining the strength in the case 
of brittle fracturein solids with cracks. 

In the linear theory of elasticity the stress intensity coefficients are brought in as 
follows /3/. Consider a point 0 on the contour of a plane crack of arbitrary shape. We 
introduce a local Cartesian coordinate system with origin at the point 0, so that the x axis 
is orthogonal to the crack contour, the y axis is perpendicular to the plane of the crack, 
and the z axis is directed along the tangent to the crack boundary. The normal fracture uyy, 

transverse shear sIy and longitudinal shear cy+ stresses have, for any load applied to the 

body, the following form at points of the 2. axis situated near the point0: 
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%Y = ki (25)-“’ + 0 (i), a,, = ka (2;r)-‘l, f 0 (I) 

uVL = k, (Zs)+: + 0 (i) 

The quantities k,,k,,k, are called the stress intensity coefficients. They depend on the 
chaise of the point on the crack contour, on the form of the body, and on the load applied. 

Formulas (9) and (241 show that when the incompressible body has initial stresses, the 
additional stresses of normal fracture and longitudinal shear on the extension of the crack 
line have, in the plane problem of a rectilinear crack under a uniform load applied along the 

edges, the same expression as those in the analogous problem without the initial stresses. 

This implies that the initial deformations have no effect on the stress intensity coefficients 
in the case of normal fracture and longitudinal shear. The same conclusion holds in the case 
of a circular crack acted upon by a uniform normal load /8/. 

In the problem of transverse shear the quantity 6,, on the extension 
crack is, according to (16), the same as the expression for the tangential 
classical theory of elasticity. The additional transvexse shear stress in 
however, has, according to (l), the form 

$2 = en + t&/ax 

of the line of the 

stress "1Z in the 

a prestressed body, 

and differs from the tangential stress on the extension of the line of the crack in the 

corresponding problem of the linear theory of elasticity. Fox this reason, the transverse shear 
stress intensity coefficient, when the crack surface is uniformly loaded, depends on the 
initial deformation. 

For Mooney material, in particular, we have, according to (171, when y = 0 in the 
neighbourhood of the crack tip, 

Since the quantity K(k) is positive in the admissible interval i*<.h<oo, the last 

formula shows that the presence of initial stresses (irrespective of their signs), results in 

an increase in the transverse shear stress intensity coefficient. 
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